Donor – Acceptor-Substituted Oligo(1,4-phenylene)s

by Soungkyoo Kim, Annette Oehlhof, Bernhard Beile, and Herbert Meier*

Institute of Organic Chemistry, University of Mainz, Duesbergweg 10–14, D-55099 Mainz (phone: +49(0)61313922605; fax: +49(0)61313925396; e-mail: hmeier@mail.uni-mainz.de)

Oligo(*para*-phenylene)s (DAOPPs) **2a**-**2d** (n = 1-4) with terminal donor-acceptor substitution (D = C₆H₁₃O, A = NO₂) were prepared by applying *Suzuki* cross-couplings for chain extension and end capping. The push – pull effect induces short-reaching polarizations of the chain consisting of conjugated but twisted benzene rings, which was studied by NMR measurements. Electron excitation from the ground-state S₀ to the more planar first-excited singlet state S₁ is combined with a strong intramolecular charge transfer (ICT), which is documented by the red shift of the long-wavelength absorption (charge-transfer band) for short chains (one or two repeat units, n = 1 or 2). The opposite influence of decreasing ICT and increasing conjugation length leads to a bathochromic series ($\lambda_{max}(n+1) \ge \lambda_{max}(n)$) with a fast saturation of $\lambda_{max}(n)$. The effective conjugation length $n_{ECL} = 4$ corresponds to λ_{∞} 349 nm. These results are discussed in the context of other oligo(*para*-phenylene)s (OPPs).

Introduction. – Conjugated oligomers with terminal donor-acceptor substitution $(D-\pi-A)$ represent an interesting class of compounds since their unusual linear and nonlinear optical and optoelectronic properties distinguish them as target compounds in materials science [1].

The 1,4-phenylene (*para*-phenylene) building blocks are simple repeat units for oligo- and poly(*para*-phenylene)s (OPPs and PPPs) **1** (*Fig. 1*), which belong to the class of conjugated oligo- and poly(arylene)s [2-5]. Unsubstituted OPPs and PPPs **1** (R=H) have a very low solubility and, therefore, a difficult process ability. *Kern et al.* [6] and *Heitz* and *Ullrich* [7] were the first who improved the solubility by the introduction of alkyl side chains. A drawback, caused by these side chains, is due to the fact, that the conjugation of the main chain is impaired by such substituents. As already realized in 1,1'-biphenyl, the OPPs and PPPs are nonplanar. The average torsion angle θ of 23° in the parent, unsubstituted chain is a compromise between the ideal conjugation ($\theta = 0^{\circ}$) and the lowest steric interaction of neighboring benzene rings ($\theta = 90^{\circ}$). From perturbation theory, the decrease of resonance energy is well described by

Fig. 1. Oligo- and poly(para-phenylene)s 1, the corresponding oligomers with terminal donor-acceptor substitution 1', and the special target systems 2 ($D = C_6H_{13}O, A = NO_2$)

© 2009 Verlag Helvetica Chimica Acta AG, Zürich

 $\cos^2\theta$ for each torsion angle θ [8]. An OPP chain of *n* benzene rings has therefore a factor of $(\cos^2\theta)^{n-1}$. Thus, the average torsion angle θ of 23° reduces the resonance energy in a *p*-sexiphenyl segment (*n*=6) to 50%. Moreover, a θ of 55.7° would implicate a 90% decrease of the resonance energy already in a substituted *p*-terphenyl (*n*=3).

Alkyl side chains can enhance the twist angle to $50-90^{\circ}$, so that the conjugation effect disappears more and more. When the substitution with alkyl chains is confined to the terminal benzene rings [9] or to few selected benzene rings in the chain [10], the solubilizing effect is limited and yet the conjugation effect impaired. Therefore, we disclaimed alkyl side chains in our concept of DAOPPs (donor – acceptor OPPs) **1'** and decided to use hexyloxy (C₆H₁₃O) as electron-donating (D) and solubilizing substituents. Moreover, we assumed that the effective conjugation length of such DAOPPs **2** with D = C₆H₁₃O and A = NO₂ should be low, so that it is not necessary to synthesize long conjugated chains with many repeat units.

Results and Discussion. – The 1-(hexyloxy)-4-nitrobenzene (**2a**) can be easily prepared from 4-nitrophenol (**3**) and 1-bromohexane (**4**) [11]. The higher members **2b**-**2d** (n = 2-4) of the DAOPP series were obtained by applying the *Suzuki* cross-coupling method [12–17] (*Scheme*). Due to the better solubility of the donor part, we

Scheme. Preparation of the OPPs 2a-2d

a) K₂CO₃, acetone or DMF. b) 1. BuLi, 2. H₂O. c) K₂CO₃, [Pd(PPh₃)₄].

	и	δ (arom. H)				δ (aliph. H)					
		AA'BB'				$CH_2O(t, J = 6.6 Hz)$	$\operatorname{CH}_{2}(m)$	$\operatorname{CH}_{2}(m)$	$(CH_2)_2 (m)$	Me (t ^a))	
6a	-	7.33, 6.74				3.89	1.68 - 1.72	1.38 - 1.45	1.30 - 1.35	0.88	
6 b	0	7.50, 7.39	7.45, 6.94			3.97	1.75 - 1.81	1.42 - 1.48	1.31 - 1.35	0.90	
õ	б	7.61, 7.55	7.60, 7.48	7.55, 6.97		3.99	1.78 - 1.82	1.44 - 1.50	1.31 - 1.37	06.0	
	и	δ (C–O) ^b)	$\delta \left(\mathrm{C-Br} ight)^{\mathrm{b}} ight)$	δ (C) ^b)	δ (CH)	δ (CH ₂ O)	δ (CH ₂)	δ (Me)			
6a	1	158.3	112.6		132.2, 116.3	68.3	29.1	25.6	31.6	22.6	14.0
6 b	0	159.2	120.8	139.9, 132.3	131.8, 128.3; 128.0, 115.0	68.2	29.3	25.7	31.6	22.6	14.0
ųc	ŝ	159.0	121.5	140.3. 139.8.	131.9. 128.6:	68.2	29.3	25.7	31.6	22.6	14.0
}	,			138.2, 132.8	128.0, 127.2; 127.1, 115.0						
a) N	ot w	ell resolved. ^b)	Quaternary C-	atoms.							

Helvetica Chimica Acta – Vol. 92 (2009)

star
ternal
in in
3
e4
Σ
to
rel.
Ę
Ð
Е.
ues
⁄al
-
\sim
-
 06
6a-6c.
of 6a-6c.
ata of 6a-6c.
Data of 6a-6c.
1R Data of 6a-6c.
VMR Data of 6a-6c.
-NMR Data of 6a-6c.
³ C-NMR Data of 6a-6c.
$d^{13}C$ -NMR Data of 6a – 6c.
and ¹³ C-NMR Data of 6a-6c.
¹ <i>H</i> - and ¹³ <i>C</i> - <i>NMR</i> Data of $6a-6c$.

1025

performed the chain extension with OPPs 6, which contain the hexyloxy group at one end and a bromo substituent at the other terminal position.

The starting compound **6a** was obtained by alkylation of phenol **5** with **4**. Lithiation of **6** and reaction with fluorodimethoxyborane (7) [18] (see also [19]) yielded the boronic acids 8 (48-75%). Regardless of their self-condensation, they were transformed to the higher 'phenylogues' $(6a \rightarrow 8a \rightarrow 6b \rightarrow 8b \rightarrow 6c \rightarrow 8c)$ by alternate reactions with 1-bromo-4-iodobenzene (9) and fluorodimethoxyborane (7). Hensel and co-workers found that the iodo side of 9 is much more reactive than the bromo side [20]. Thus, a chemoselective coupling is possible under certain reaction conditions. Therefore, a protection/deprotection technique could be avoided. The bromo substituent can then be used subsequently for the transformation to the higher boronic acid 8. The final step, the end capping with 1-bromo-4-nitrobenzene (10), furnished the target DAOPPs 2b-2d (n=2-4). The total yields amounted to 55% ($5 \rightarrow 2b$, three steps), 17% ($5 \rightarrow 2c$, five steps), and 5% ($5 \rightarrow 2d$, seven steps). We stopped the chain extension at the quaterphenyl **2d** (n = 4) because the effective conjugation length was reached there, and the solubility became rather low. Further chain extensions $(n = 5, \dots, n)$ (6,...) are certainly feasible on this route when branched, that means better solubilizing alkoxy groups are applied.

The purity of the intermediates 6a-6c was checked by NMR spectroscopy. Their ¹H- and ¹³C-NMR data are summarized in the *Table*. The target compounds 2a-2d were characterized by their UV, NMR, and MS data and by their elemental analyses (*Exper. Part*).

Polarization of the conjugated chain by terminal donor-acceptor substitution is a typical property of $D-\pi-A$ systems. Such a push-pull effect is often described by zwitterionic resonance structures – as shown in *Fig. 2* for DAOPPs and the related oligo(1,4-phenylenevinylene)s (DAOPVs). Apart from this characterization in the valence-bond theory (VB), a quadrupolar description according to MO theory is often more appropriate – in particular for longer chains. The donor group D enhances the electron density at one end of the π chain, and the acceptor group A decreases the electron density at the other end [1]. Strength of D and A and the nature of the π linker decide how 'deep' the change of electron density 'grabs' into the chain.

Fig. 2. Zwitterionic resonance structures of donor – acceptor substituted oligo(1,4-phenylene)s (DAOPPs) 1' and oligo(1,4-phenylenevinylene)s (DAOPVs) 11 in the VB theory and quadrupolar counterpart 12 for both in MO theory

Whereas OPVs are essentially planar (in a flat well of the potential energy related to torsions), unsymmetrical OPPs **1'** with $n \ge 2$ repeat units exist in 2^{n-1} nonplanar conformations [21]. Torsions along the chain diminish certainly the mesomeric push–pull effect and the extra resonance energy. *Fig. 3* illustrates the ¹H-NMR data of **2a** – **2d** (n = 1-4). Each benzene ring represents an AA'BB' spin system with a certain $\Delta\delta$ difference. The $\Delta\delta$ values are high for the 'outer' benzene rings and very low for the 'inner' benzene rings. On the whole, all chemical shifts $\delta(H)$ increase with increasing *n* values. This is, however, an anisotropy effect. The anisotropy cone of the aromatic region increases with increasing number of rings.

Fig. 3. AA'BB' Spin systems of the benzene rings in the ¹H-NMR spectra of 2a-2d (n=1-4). Measurement in CDCl₃, except 2d, which was measured in (D₈)THF.

The superposition of anisotropy and electron-density effects plays a minor role in ¹³C-NMR spectroscopy, so that the $\delta(C)$ values permit a reliable statement about charge densities. *Fig. 4* summarizes the $\delta(C)$ values of 1,1'-biphenyl (**13**), the merely acceptor- or donor-substituted model compounds **14** and **15**, and the push-pull compounds **2b** and **2c**. The $\delta(C)$ values of **13**-**15** reveal that the electron-withdrawing NO₂ group and the electron releasing C₆H₁₃O group have a strong effect on their own benzene ring, each, but only a minor effect on the next benzene ring. The polarization of the π chain by the push-pull substitution is much higher in the DAOPV series **11** [22][23] than here in the DAOPP series **1'**. The torsion of the benzene rings in **1'** reduces the charge transfer. Nevertheless, a certain push-pull effect is present in series **2**. The 'inner' quaternary C-atoms of **2b** and **2c** have – compared to **13** ($\delta(C)$ 141.1) – alternately high and low δ values, *i.e.*, $\delta(C)$ 147.2 and 130.7 in the case of **2b**, and $\delta(C)$

147.3, 136.8, 141.6, and 132.4 in the case of **2c**. The same effect should be valid for **2d**. The solubility of **2d** in CDCl₃ is, however, too low to obtain reliable δ values of the quaternary C-atoms.

Fig. 4. ¹³*C*-*NMR* Chemical shifts δ [ppm] of 1,1'-biphenyl (**13**), 4-nitro-1,1'-biphenyl (**14**), 4-(hexyloxy)-1,1'-biphenyl (**15**), 4-(hexyloxy)-4'-nitro-1,1'-biphenyl (**2b**), and 4-(hexyloxy)-4''-nitro-1,1':4',1''-terphenyl (**2c**). Measurement in CDCl₃, with Me₄Si as internal standard.

After the polarization of the DAOPPs in the ground-state S_0 , the charge distribution in the more planar first-excited singlet state S_1 shall be discussed here. The band of the allowed long-wavelength electron excitation $S_0 \rightarrow S_1$ is called a charge-transfer band because it is based on an intramolecular charge transfer (ICT). The shift of electron density from the donor to the acceptor leads in the majority of $D - \pi - A$ compounds to very high dipole moments μ (S_1) [1]. The ICT lowers the transition energy ΔE ($S_0 \rightarrow S_1$) by reducing the electron-correlation energy. However, when the distance between D and A increases, the ICT decreases. Increasing length of the π chain effects, on the other hand, a decreasing HOMO–LUMO gap. Consequently, the increasing number *n* of repeat units has two opposite effects, and the crucial question is, which of the two effects will prevail. *Fig.* 5 puts the λ_{max} values, obtained for the series **2a** - **2d** (n = 1 - 4) in the context of other OPPs. The parent OPP series **13a** - **13f** [24] as well as series **16a** - **16d** [9] with *tert*-butyl groups at the terminal rings are 'normal' series of conjugated oligomers. That means, their λ_{max} values increase monotonously with

1028

increasing *n* values and approach to a limiting value λ_{∞} . The curves shown in *Fig. 5* correspond to empirical exponential functions [26], which proved to be much better for intra- and extrapolations of the transition energy ΔE than earlier used hyperbolic functions ($\Delta E = f(1/n)$) [1][21][26] or trigonometric functions ($\Delta E = f(\cos \pi/n + 1)$) [27]. Recently *Gierschner* and co-workers [28] and *Bednarz* and co-workers [29]

Fig. 5. Long-wavelength absorption maxima of 2a-2d in $CHCl_3(\bullet)$ in comparison to other OPP series: 13a-13f in THF [24], 16a-16d in THF [9], 17a-17d in octane [20], and 18a-18d in 1-methylpyrrolidin-2-one [25]

proposed semi- to nonempirical equations for the dependence of λ or ΔE on the number *n* of repeat units.

The effective conjugation length [30] of **13** and **16** amounts to $n_{\text{ECL}} = 9$ and 11, respectively. These numbers n_{ECL} , as well as λ_{∞} , characterize the saturation phenomenon of conjugated oligomers. Series **17** [20] gave the remarkable result that the λ_{max} values do not depend on *n*, that means on the length of the chain. Two hexyl groups at every second benzene ring are obviously sufficient for the total loss of conjugation.

The push – pull series $2\mathbf{a} - 2\mathbf{d}$ is a bathochromic series: $\lambda_{\max} 311, 344, 346, \text{and } 348 \text{ nm}$ (in CHCl₃) for n = 1, 2, 3, and 4, respectively, but the convergence limit ($\lambda_{\infty} \pm 1$) nm [1] is already reached at $n_{\text{ECL}} = 4$ (*Fig. 5*). The $S_0 \rightarrow S_2$ transition approaches, with increasing chain length, the $S_0 \rightarrow S_1$ transition. Both bands are still separate for n = 3 but have to be separated for n = 4. A slightly unsymmetrical *Gauss* function proved to be successful for this purpose [31]. The ICT effects a very strong red shift for n = 1 and 2, but then it decreases fast for higher n values. The bathochromic effect ($\lambda_{\max}(n+1) \ge \lambda_{\max}(n)$) caused by the increased conjugation is almost cancelled by the decreasing ICT effect. Series **18** [25] has – compared to **2** – an even stronger push – pull character (*Fig. 5*). Increasing conjugation can no more compensate the decreasing ICT for n > 2. Thus λ_{\max} of series **18** reaches a maximum for n = 2. The extrapolation to λ_{∞} in such a case would require some higher n values (n > 4) [1].

Conclusion and Outlook. – Oligo(*para*-phenylene)s 2a-2d with terminal donoracceptor substitution (RO/NO₂) can be easily prepared by applying the *Suzuki*-*Miyaura* protocol. A protecting/deprotecting technique can be avoided, when the different reactivity of 1-bromo-4-iodobenzene is used for the chain-extension steps.

Although the polarization of such $D - \pi - A$ chains is rather low in the ground-state S_0 (NMR measurements), the intramolecular charge transfer (ICT) on electronic excitation $(S_0 \rightarrow S_1)$ is high, that means the long-wavelength absorption is considerably red-shifted for small numbers of repeat units (n = 1 and 2). Higher *n* values (n = 3 and 4) lead very fast to a saturation $(n_{ECL} = 4)$ in the UV region $(\lambda_{\infty} 349 \text{ nm})$. The calculations of DAOPPs 1' on the CNDOVSB basis [32] or DFT basis [33] do not completely satisfy, in this respect, but together with the results discussed here, one can predict, that longer DAOPPs (n = 5, 6, ...) with strong push – pull effects will have high dipole moments μ and first-order hyperpolarizabilities β , but will still have a very good transparency in the VIS region. Their preparation and process ability should be facilitated by well solubilizing, strong donor groups such as bis(2-hexyloctyl)amino $[(C_6H_{13})_2CHCH_2]_2N)$ or (2-hexyloctyl)oxy groups $((C_6H_{13})_2CHCH_2O)$.

We are grateful to the *Deutsche Forschungsgemeinschaft*, the *Fonds der Chemischen Industrie*, and the *Materialwissenschaftliche Forschungszentrum der Universität Mainz* for financial support.

Experimental Part

1. General. The starting compounds 3-5, 9, and 10 and the model compounds 13 and 14 are commercially available. M.p. (uncorrected): *Büchi* apparatus. UV/VIS Spectra: *Zeiss-MCS-320/340* diode array; CHCl₃ solns.; λ_{max} in nm. ¹H- and ¹³C-NMR Spectra: *Bruker AM 400* and *AMX 400*; CDCl₃ solns.; δ in ppm, rel. to Me₄Si as internal standard, *J* in Hz. FD-MS: *Finnigan MAT-95*; in *m/z* (rel. %).

2. Alkylation of 4-Nitrophenol (3) and 4-Bromophenol (5) with 1-Bromohexane (4). Preparations according to [11][34][35].

1-(Hexyloxy)-4-nitrobenzene (2a): Yield 95%. M.p. 26° (EtOH) ([34]: 25.5°). ¹H-NMR (CDCl₃): 0.89 (t, J = 6.1, Me(6')), 1.28–1.37 (m, CH₂(4'), CH₂(5')); 1.40–1.48 (m, CH₂(3')); 1.75–1.83 (m, CH₂(2')); 4.02 (t, J = 6.4, CH₂(1')); 6.91, 8.16 (AA'BB', H–C(2,6), H–C(3,5)). ¹³C-NMR (CDCl₃): 13.9 (Me(6')); 22.4 (CH₂(5')); 25.6 (CH₂(3')); 28.9 (CH₂(2'), 31.4 (CH₂(4')); 68.9 (CH₂(1')); 114.4 (C(3)); 125.8 (C(2)); 141.4 (C(1)); 164.3 (C(4)). The product corresponds to an authentic sample [34].

1-Bromo-4-(hexyloxy)benzene (**6a**): Colorless viscous oil. Yield 94%. The product corresponds to an authentic sample [35].

3. Chain Extension $6a \rightarrow 8a \rightarrow 6b \rightarrow 8b \rightarrow 6c \rightarrow 8c$. 3.1. Steps $6 \rightarrow 8$: General Procedure. A soln. of the corresponding bromo compound 6a - 6c (20.0 mmol) in Et₂O (60–100 ml) was purged with a stream of Ar, before 2.5M BuLi in hexane (8.4 ml, 21.0 mmol) was added at -78° with a syringe. After 2 h stirring, the soln. was slowly added at -78° to fluorodimethoxyborane (7; 368 g, 40.0 mmol) [18][19]. The cooling was stopped and the soln. allowed to come to r.t. After 12–24 h, H₂O (50 ml) was added. The aq. layer was extracted with Et₂O (2 × 30 ml), and the combined org. phase was washed with H₂O (20 ml), dried (MgSO₄), and purified by column filtration (SiO₂, 15 × 8 cm, hexane/Et₂O 100:0 \rightarrow 0:100). Evaporation yielded the crude boronic acids 8a (75%), 8b (48%), or 8c (48%), which could be directly used for the *Suzuki* reaction with 1-bromo-4-iodobenzene (9) or for the end capping with 1-bromo-4-nitrobenzene (10).

3.2. Steps **8** \rightarrow **6**: General Procedure. A soln. of the boronic acid **8a,b** (6.0 mmol) and iodo component **9** (1.70 g, 6.0 mmol) in toluene/THF 1:1 (200 ml) was degassed and purged with a slow stream of Ar. Aq. 2M K₂CO₃ (100 ml) and [Pd(PPh₃)₄] (115 mg, 0.1 mmol) were added. The mixture was vigorously stirred and refluxed under Ar for 2–3 d. The H₂O phase was extracted with toluene (2 × 20 ml), and the combined org. phase was washed with sat. NaCl soln. (20 ml), dried (MgSO₄), and purified by column filtration (SiO₂, 15 × 8 cm, toluene). The crude products **6b** (70%) or **6c** (64%) could be directly used for the next step. A purity control was based on the NMR data: *Table*.

4. End Capping $8a-8c \rightarrow 2b-2d$: General Procedure. A soln. of crude boronic acid 8a-8c (1.0 mmol) and 1-bromo-4-nitrobenzene (10) in toluene/THF 1:1 (30-40 ml) was degassed and purged with Ar. Aq. 2M K₂CO₃ (15-20 ml) and [Pd(PPh₃)₄] (20 mg, 17.4 $\cdot 10^{-3}$ mmol) were added. The mixture was vigorously stirred and heated under reflux for 2-4 d. The H₂O phase was extracted with toluene (2 × 20 ml), and the combined org. phase was washed with sat. NaCl soln. (20 ml), dried (MgSO₄), and evaporated. The crude DAOPPs 2a-2d were purified by crystallization.

4-(*Hexyloxy*)-4'-*nitro*-1,1'-*biphenyl* (**2b**): Yield 78%. Colorless solid. M.p. 60° (PrOH). ¹H-NMR (CDCl₃): 0.90 (*t*, *J* = 6.1, Me(6")); 1.32 – 1.38 (*m*, CH₂(4"), CH₂(5")); 1.42 – 1.48 (*m*, CH₂(3")); 1.75 – 1.85 (*m*, CH₂(2")); 4.00 (*t*, *J* = 6.4, CH₂(1")); 6.98, 7.55 (*AA'BB'*, H–C(2,6), H–C(3,5)); 7.67, 8.25 (*AA'BB'*, H–C(2',6'), H–C(3',5')). ¹³C-NMR (CDCl₃): 13.8 (Me); 22.4 (CH₂(5")); 25.5 (CH₂(3")); 29.0 (CH₂(2")); 31.4 (CH₂(4")); 68.1 (CH₂(1")); 115.1 (C(3)); 123.9 (C(3')); 126.9 (C(2')); 128.4 (C(2)); 130.7 (C(1)); 146.5 (C(4')); 147.2 (C(1')); 160.0 (C(4)). FD-MS: 300 (100, [*M*+H]⁺). Anal. calc. for C₁₈H₂₁NO₃ (299.4): C 72.22, H 7.07, N 4.68; found: C 71.98, H 7.26, N 4.88.

4-(*Hexyloxy*)-4"-*nitro*-1,1':4',1"-terphenyl (**2c**): Yield 70%. Light yellow solid. M.p. 198–200° (PrOH/1,2-dichlorobenzene). ¹H-NMR (CDCl₃): 0.93 (t, J = 6.1, Me(6"'')); 1.32–1.40 (m, CH₂(4"'), CH₂(5"')); 1.43–1.53 (m, CH₂(3"')); 1.77–1.89 (m, CH₂(2"')); 4.01 (t, J = 6.5, CH₂(1"')); 7.01, 7.58 (*AA'BB'*, H–C(2,6), H–C(3,5)); 7.67, 7.68 (*AA'BB'*, H–C(2',6'), H–C(3',5')); 7.77, 8.31 (*AA'BB'*, H–C(2",6"), H–C(3",5")). ¹³C-NMR (CDCl₃): 14.0 (Me(6"'); 22.6 (CH₂(5"')); 25.7 (CH₂(3"')); 29.2 (CH₂(2"')); 31.6 (CH₂(4"')); 68.2 (CH₂(1"')); 115.1 (C(3)); 124.2 (C(3")); 127.3 (C(2")); 127.5, 127.7 (C(2'), C(3')); 128.1 (C(3)); 132.4 (C(1)); 136.8 (C(4')); 141.6 (C(1')); 147.3 (C(1'')); 147.1 (C(4'')); 159.3 (C(4)). FD-MS: 376 (100, [*M* + H]⁺). Anal. calc. for C₂₄H₂₅NO₃ (375.5): C 76.77, H 6.71, N 3.73; found: C 76.99, H 7.01, N 3.75.

 $\begin{array}{l} 4-(Hexyloxy)-4'''-nitro-1,1':4',1'':4'',1'''-quaterphenyl \ \textbf{(2d)}: \ Yield \ 62\%. \ Light \ yellow \ solid. \ M.p. \\ > 200^{\circ} \ (dec.; \ PrOH/1,2-dichlorobenzene). \ ^1H-NMR \ ((D_8)THF): \ 0.94 \ (t, J=6.1, \ Me); \ 1.34-1.41 \ (m, \ CH_2(4''')); \ CH_2(5''')); \ 1.45-1.54 \ (m, \ CH_2(3''')); \ 1.76-1.85 \ (m, \ CH_2(2''')); \ 4.01 \ (t, J=6.4, \ CH_2(1'''); \ 7.00, \ 7.61 \ (AA'BB', \ H-C(2,6), \ H-C(2,6)); \ 7.70, \ 7.77 \ (AA'BB', \ H-C(2',6'), \ H-C(3'',5'')); \ 7.85, \ 7.86 \ (AA'BB', \ H-C(2'',6''), \ H-C(3'',5'')); \ 7.96, \ 8.33 \ (AA'BB', \ H-C(2'',6''), \ H-C(3'',5'')). \ ^{13}C-NMR: \ Solubility \end{array}$

unsufficient for reliable data. FD-MS: 452 (100, $[M + H]^+$). Anal. calc. for $C_{30}H_{29}NO_3$ (451.6): C 79.80, H 6.47, N 3.10; found: C 80.08, H 6.33, N 2.90.

5. 4-(*Hexyloxy*)-1,1'-biphenyl (15). Preparation according to [36] and analogously to $3+4 \rightarrow 2a$. Yield 93%. M.p. 68° ([36]: 63-63.5°).

REFERENCES

- H. Meier, Angew. Chem. 2005, 117, 2536; H. Meier, Angew. Chem., Int. Ed. 2005, 44, 2482, and ref. cit. therein.
- [2] A. C. Grimsdale, in 'Organic Light-Emitting Devices', Eds. K. Müllen and U. Scherf, Wiley-VCH, Weinheim, 2006, p. 215.
- [3] R. E. Martin, F. Diederich, Angew. Chem. 1999, 111, 1440; R. E. Martin, F. Diederich, Angew. Chem., Int. Ed. 1999, 38, 1350.
- [4] U. Scherf, in 'Top. Curr. Chem.', 1999, Vol. 201, p. 163.
- [5] Y. Geerts, G. Klärner, K. Müllen, in 'Electronic Materials: The Oligomer Approach', Eds. K. Müllen and G. Wegner, Wiley – VCH, Weinheim, 1998, p. 1.
- [6] W. Kern, M. Seibel, H. O. Wirth, Makromol. Chem. 1959, 29, 164.
- [7] W. Heitz, R. Ullrich, Makromol. Chem. 1966, 98, 29.
- [8] M. J. S. Dewar, J. Am. Chem. Soc. 1952, 74, 3345.
- [9] H. Gregorius, W. Heitz, K. Müllen, Adv. Mater. 1993, 5, 279.
- [10] P. Galda, M. Rehahn, Synthesis 1996, 614.
- [11] C. N. Carrigan, R. D. Bartlett, C. S. Esslinger, K. A. Cybulski, P. Tongcharoensirikul, R. J. Bridges, C. M. Thompson, J. Med. Chem. 2002, 45, 2260; C. F. H. Allen, J. W. Gates Jr., Org. Synth. 1955, Coll. Vol. 3, 140.
- [12] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [13] F. Diederich, P. J. Stang, 'Metal-Catalyzed Cross-Coupling Reactions', Wiley-VCH, Weinheim, 1998.
- [14] A.-D. Schlüter, J. Polym. Sci. A: Polym. Chem. 2001, 39, 1533.
- [15] N. Miyaura, 'Cross-Coupling Reactions', Springer, Berlin, 2002.
- [16] A. de Meijere, F. Diederich, 'Metal-Catalyzed Cross-Coupling Reactions', Wiley VCH, Weinheim, 2004.
- [17] O. Baudoin, Eur. J. Org. Chem. 2005, 4223.
- [18] G. Rauchschwalbe, M. Schlosser, Helv. Chim. Acta 1975, 58, 1094.
- [19] F. Leroux, T. U. Hutschenreuter, C. Charrière, R. Scopelliti, R. W. Hartmann, *Helv. Chim. Acta* 2003, 86, 2671; F. Leroux, H. Mettler, *Synlett* 2006, 5, 766.
- [20] P. Liess, V. Hensel, A.-D. Schlüter, Liebigs Ann. Chem. 1996, 1037.
- [21] H. Meier, in 'Carbon-Rich Compounds: Molecules to Materials', Eds. M. M. Haley and R. R. Tykwinski, Wiley-VCH, Weinheim, 2006, p. 476.
- [22] H. Meier, J. Gerold, H. Kolshorn, W. Baumann, M. Bletz, Angew. Chem. 2002, 114, 302; H. Meier, J. Gerold, H. Kolshorn, W. Baumann, M. Bletz, Angew. Chem., Int. Ed. 2002, 41, 292.
- [23] H. Meier, J. Gerold, H. Kolshorn, B. Mühling, Chem.-Eur. J. 2004, 10, 360.
- [24] S. Matsuoka, H. Fujii, T. Yamada, C. Pac, A. Ishida, M. Takamuku, M. Kusaba, N. Nakashima, S. Yanagida, Y. Hashimoto, T. Sakata, J. Phys. Chem. 1991, 95, 5802.
- [25] L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, C. W. Spangler, J. Phys. Chem. 1991, 95, 10643.
- [26] H. Meier, U. Stalmach, H. Kolshorn, Acta Polym. 1997, 48, 379.
- [27] A. C. Benniston, A. Harriman, D. B. Rewinska, S. Yang, Y.-G. Zhi, Chem.-Eur. J. 2007, 13, 10194, and ref. cit. therein.
- [28] J. Gierschner, J. Cornil, H.-J. Egelhaaf, Adv. Mater. 2007, 19, 173.
- [29] M. Bednarz, P. Reineker, E. Mena-Osteritz, P. Bäuerle, Chem. Phys. 2007, 342, 191.
- [30] H.-H. Hörhold, M. Helbig, D. Raabe, J. Opfermann, U. Scherf, R. Stockmann, D. Weiss, Z. Chem. 1987, 27, 126.
- [31] H.-H. Perkampus, 'UV/Vis-Spektroskopie und ihre Anwendungen', Springer, Berlin, 1986, p. 187.

1032

Helvetica Chimica Acta – Vol. 92 (2009)

- [32] I. D. L. Albert, D. Pugh, J. O. Morby, J. Chem. Soc., Faraday Trans. 1994, 90, 2617.
- [33] S. Sanyasi, K. Bhanuprakash, J. Mol. Struct.: Theochem 2006, 761, 31.
- [34] J. P. Schroeder, D. C. Schroeder, J. Org. Chem. 1968, 33, 591.
- [35] G. W. Gray, M. Hird, D. Lancey, K. J. Toyne, J. Chem. Soc., Perkin Trans. 2 1989, 2041.
- [36] H. Suzumura, Bull. Chem. Soc. Jpn. 1962, 35, 108.

Received November 4, 2008